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ABSTRACT

Statistical complexity of neural spike trains

Report Title

We present closed-form expressions for the entropy rate, statistical complexity, and predictive information for the 
spike train of a single neuron in terms of the first passage time probability distribution. Our analysis applies to any 
one-dimensional neural model where observation of a spike causes the neuron to ``reset'' to some membrane voltage 
and in which any noise term is uncorrelated in time.  We then use these formulae to study the linear leaky integrate-
and-fire and quadratic integrate-and-fire neurons driven by white noise in the naturally spiking regime. The statistical 
complexity is simply related to the interspike interval's mean and coefficient of variation. The excess entropy, or the 
total predictive information, is highest for neural spike trains with low interspike interval coefficients of variation. 
Both the statistical complexity and the excess entropy arise naturally in the context of predictive rate-distortion and 
could be useful for characterizing ``predictor'' neurons that learn to predict other neurons.
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Statistical complexity of neural spike trains

Sarah Marzen, Michael R. DeWeese and Jim Crutchfield

Summary. We present closed-form expressions
for the entropy rate, statistical complexity, and pre-
dictive information for the spike train of a single
neuron in terms of the first passage time probabil-
ity distribution. Our analysis applies to any one-
dimensional neural model where observation of a
spike causes the neuron to “reset” to some membrane
voltage and in which any noise term is uncorrelated
in time. We then use these formulae to study the lin-
ear leaky integrate-and-fire and quadratic integrate-
and-fire neurons driven by white noise in the natural
spiking regime. The statistical complexity [2, 1] is
simply related to the interspike interval’s mean and
coefficient of variation. The excess entropy, or the to-
tal predictive information, is highest for neural spike
trains with low interspike interval coefficients of vari-
ation. Both the statistical complexity and the excess
entropy arise naturally in the context of predictive
rate-distortion and could be useful for characterizing
“predictor” neurons [3] that learn to predict other
neurons.

Additional Detail. The statistical complexity
Cµ, predictive information Ipred(T ), and entropy rate
hµ are basic metrics that can be used to character-
ize a neural spike train: hµ and Ipred(T ) are use-
ful for characterizing the entropy of a neural spike
train and, thus, useful for calculating the mutual in-
formation between the stimulus and a neural spike
train; Cµ reveal underlying dynamical phase transi-
tions and so qualitative changes in memory architec-
ture. These quantities also offer fundamental struc-
tural interpretations: the statistical complexity is
the amount of memory required to optimally predict
the future; the excess entropy E = limT→∞ Ipred(T )
is the amount of future information that is pre-
dictable. Hence, Cµ, Ipred(T ), and hµ can charac-
terize the performance of predictor neurons, for ex-
ample [3].

However, calculating these quantities can be chal-
lenging, except in the structureless case of the Pois-
son neuron. Then, Cµ and Ipred(T ) vanish, and

the differential entropy rate in bits per second is
hµ = −λ log2 λ, where λ is the Poisson process rate.
We present new formulae for Cµ, Ipred(T ), and hµ
of a neural spike train whose interspike intervals are
drawn independently from some distribution F (t).
This includes neural spike trains of both integrate-
and-fire neurons and spike-response time neurons
driven by white noise. Denote the mean interspike
interval as 〈T 〉 and define w(t) =

∫∞
t
F (t′)dt′, Z =∫∞

0
w(t′)dt′. When the time resolution ∆t of the ob-

server is very small,

Cµ = −
∫ ∞

0

w(t)

〈T 〉
log2

w(t)∆t

〈T 〉
dt (1)

hµ(t) =
w(t)

〈T 〉
log2

e2 〈T 〉
∫∞
t
w(t′)dt′

w(t)2∆t

− 1

〈T 〉

∫ t

0

F (t′) log2(
F (t′)∆t

e
)dt′. (2)

The entropy rate is hµ = limt→∞ hµ(t) and the pre-
dictive information/finite-time excess entropy can be

calculated from Ipred(T ) =
∫ T

0
(hµ(t) − hµ)dt. The

key to deriving these expressions was proving that
the causal states [2, 1] of such a neural spike train
were counts of the time since the last spike.

We present preliminary results for the linear leaky-
integrate and fire model and the quadratic integrate-
and-fire model with η(t) as white noise, so that
the membrane voltage follows the equation dV

dt
=

f(V )+g(V )η(t). When V reaches Vpeak, then a spike
is emitted and V is reset to Vreset. First passage
time probability distributions and their cumulative
distribution functions were calculated empirically by
generating 105 trajectories for each set of parame-
ters using an Euler integration scheme. The linear
leaky integrate-and-fire model can be described by
Vpeak = 1, Vreset = 0, g(V ) = a, f(V ) = b − V
with a ≥ 0 and b ∈ (−∞,∞); we studied a ≤ 5
and 1 < b ≤ 5. The quadratic integrate-and-fire can
be described by g(V ) = a, and f(V ) = b + V 2 for a
range of a ≥ 0 and b ∈ (−∞,∞); we set Vpeak = 100,
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Fig. 1: A: Differential statistical complexity of a quadratic integrate-and-fire neuron. Cµ peaks
near the dynamical phase transition at b = 0. B: Excess entropy of integrate-and-fire neurons. At
low interspike interval coefficient of variation ( σT〈T 〉), the excess entropy appears to be a function only of the
coefficient of variation. Data from linear leaky integrate-and-fire neurons are blue and data from quadratic
integrate-and-fire neurons are red. C: Predictive rate-distortion curve using finite-time causal
states as predictive features. For linear and quadratic integrate-and-fire neurons with E ∼ 0.3 bits
and Cµ ∼ 12 bits, assuming a time step of ∆t = 10−4, most of the excess entropy can be captured using only
50% of its statistical complexity. Linear leaky integrate-and-fire data is blue; quadratic integrate-and-fire
data is green.

Vreset = −100 and studied a ≤ 5 and 0 < b ≤ 5.
Time is in units of the membrane time constant.

The differential statistical complexity Cµ (ignor-
ing the ∆t component of Cµ in Eq. 1) was well-
approximated by

Cµ ≈ log2〈T 〉+ 1.4
σT
〈T 〉

, (3)

where 〈T 〉 is the mean interspike interval and σT
〈T 〉

is the interspike interval coefficient of variation for
both the leaky linear integrate-and-fire neuron and
the quadratic integrate-and-fire neuron across the
entire simulated parameter space. The log2〈T 〉 term
is the statistical complexity of a periodic signal with
period 〈T 〉, and the additional term 1.4 σT

〈T 〉 accounts
for the fact that the signal is almost periodic. For
both types of neurons, Cµ is maximized at the dy-
namical phase transition boundary; this is shown for
the quadratic integrate-and-fire in Figure 1A. Figure
1B shows that the excess entropy E increases as the
interspike interval coefficient of variation decreases,
which is what one would expect for an almost peri-
odic signal. The differential entropy rates hµ of the
integrate-and-fire neurons decreased as the intrinsic
noise parameter a approached 0 and the spike train
became a noiseless periodic signal.

One does not need to capture all of the statis-
tical complexity in order to capture most of the
predictive information; the tradeoff between pre-

dictive ability and memory storage can be quanti-
fied by the predictive information bottleneck frame-
work, for instance. Finite-time T causal states are
(suboptimal) lossy predictive features with which
we can capture Ipred(T ) of the full excess en-

tropy E using only Cµ(T ) = −
∫ T

0
w(t)
〈T 〉 log w(t)∆t

〈T 〉 dt−∫∞
T w(t)dt

〈T 〉 log
∫∞
T w(t)dt

〈T 〉 +
∫ T
0 w(t)dt

〈T 〉 log 1
∆t

of the full sta-
tistical complexity Cµ. The quadratic integrate-and-
fire neuron has a similar predictive rate-distortion
curve to the leaky linear integrate-and-fire neuron
at low (∼ 0.1) interspike interval coefficients of vari-
ation. Figure 1C shows that, for these neurons, at
least 90% of the total predictability can be captured
with a memory of only ∼ 50% of the total statistical
complexity.
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